e TSR e S ey S
T e el e Akhlesh Lakhtakia
- Professor

Engineering Science and Mechanics |

The Pennsylvania State University

227 Hammond Building
University Park, PA 16802-1401

Tel: (814) 863-4319  Fax: (814) 863-7967

E-mail: AXL4@PSU.EDU

PENNSTATE

Speculations in Science and Technology 20. 297-300 (1997) ﬁ

A generalization based on quantitative inadequacy
of Archimedes principle in balloon experiments

AJAY SHARMA

Communiry Science Centre. Post Box 107, Directorate of Education, Shimla 171001 (HP). India

One consequence of Archimedes’ principle is that the mass which a balloon supports in a fluid is
independent of the shape of the balioon and depends only upon its volume. For air-filled floating balloons
in water some deviations from this result have been observed in first-stage experiments. The dependence
of mass on the shape of the balloon which is supported in water has been clearly observed in various
observations. It is evident from the first-stage experiments that for floating balloons the principle is only
true for particular shapes. The deviations from the principle and contradictions can be explained if the
definition of the principle is empirically modified i.e. it is assumed that the upthrust experienced by body
is proportional to the weight of the fluid displaced. The constant of proportionality also accounts for shape
of body and other relevant factors that were not accounted for by the principle.
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Introduction

Archimedes' principle states that when a body is immersed in a fluid it experiences an upthrust
(or buoyant force) and its weight decrease is cqual to the weight of fluid displaced [1].
Archimedes (287-212BC) stated this principle about 2200 years ago (ca. 250BC). The
mathematical equations based upon the principle became derivable about 1935 years: after
the enunciation of the principle when Newton published the law of gravitation in the Principia.
It is very difficult to understand how scientists took the principle for granted for about 1935
vears without mathematical backing and treated it as an established law. It is now used as one of
the methods to determine the densities of bodies [2]. However, the densities can be measured
most accurately by direct methods [1].

Floating balloons

Some experiments on floating balloons have not been conducted. One of the reasons may be
that relevant mathematical equations became derivable only about 1935 years after enunciation
of Archimedes’ principle. Consider a balloon in which volume 1 is filled with air of density D,
and is floating in water of density D,, supporting a mass m. Then the total weight is

W=(VD,+mp) g (n
where VD, is the mass of air filled in the balloon: mgis sum of masses of sheath of balloon and
the additional mass antached for balancing the balloon. According to Archimedes’ principle an
upthrust experienced by the balloon in water is
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U=V+vw)Pg @)

where vy is sum of volumes of sheath and that of the additional mass, if any, attached to balloon
Le. the volume corresponding to my When the balloon floats, one has 7 = U or equivalently,

ms = (V + vp) Dy, — VD, (3)

A similar mathematical treatment can be found in Borowitz and Beiser (3], but they have
ncglected v which is very significant.

To conduct the experiments properly the value of v, can be kept constant and determined in
the following way. For this, a small pot of non-hygroscopic material fitted with a hook and lid
should be fabricated. With the help of the hook the small pot can be suspended from a non-
hygroscopic balloon or vessel (which also has a hook). To balance the balloon or vessel, the
masses can be placed inside the small pot opening the lid carefully outside the water. The
masses should be in the form of fine granules or powder because in order to balance the balloon
properly, masses of the order of a fraction of milligram may be required. The mass which the
balloon supports should be the mass of the pot and the mass of the vessel sheath. The rest of the
terms can be measured easily.

Experimental verification of Equation 3

Some experiments were conducted for about 6 months in 1991 on air filled balloons of different
shapes. According to the principle m depends only upon the volume of the balloon, not on its
shape. From these first-stage experiments. the dependence of m; on the shape of balloon was
clearly observed. The volume of balloons varied from the nearly 175 cm® to 1000 ¢m®. For the
balloons of volume 175cm” to about 550 cm’, the shapes varied from spherical to cylindrical:
and the deviations ranged from 3 to 1.5%. Next when the volume was increased from 550 cm’®
to about 1000 cm’: the shape of the balloon varied from cylindrical to nearly spherical and the
percentage deviations increased from 1.5 to 3.

In the first-stage experiments. the general trend of deviation i.e dependence of my on the
shape of balloon remained the same. The magnitude of deviations was considerably and
reasonably higher for balloons of spherical shape and lower for those with elongated shapes.
This magnitude (of deviations) is expected to be higher for umbrella-shaped balloons and lower
for long pipe shaped. Apparently, from first-stage experiments it is very clear that Archimedes’
principle applied to floating balloons immersed in water under near equilibrium conditions will
be true only for a particular shape. However, to confirm the magnitude of the deviations precise
tests with the most sensitive equipments are required.

Deviations and speculative generalisation of Archimedes’ principle

The deviations from the principle are expected in precise measurements or observed in first-
stage experiments mainly on the basis of two reasons i.e. the following are the factors which
can influence the results but were not taken in account in deriving the principle.

(1) Shape of balloon: according to Equation 3, my depends only upon volume of balloon and
not on its shape. If the internal volume of balloon or vessel is 1000 cm® and volume of sheath 1s
100cm®. Now it can have any shape e.g. spherical, umbrella shaped. long pipe shaped or
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distorted shaped. In a] cases, the volume of balloon or vesse. remains the same, hence m,
should be the same. But it is evident from the first-stage experiments that nz; also depends upon
the shape. So some sensitive eXperiments are required for confirmation. For balloors or vessels
of different shapes, the thrusts on the bases (pressure x area of cross-section of base) will be
different.

(2) Depth and magnitude: according to the principle, my is independent of the depth at which
the balloon floats in the tank of waler. It means that the balioon may float at upper surface in the

the basis of the following established fact. If a submarine is ro be lowered to an increasing
depth, then more water (equivalent 1o an additional mass in the case of the balloon) has to be
put into the tanks. So it can be concluded that balloon may support slightly more mass at the
bottom than at the upper surface of the water. It is observed in the first-stage experiments that

1

Effect of density of additional mass attached

According to Equation 3, if 1000 cm® of air of density 0.001293 g cm= fills a balloon then it
will float in water of density 1 gcm™3 supporting mass equal to 1,698.707 gif veis 100cm’, In
the case that the mass which the balloon of any arbitrary shape Supports (my) is found to equal
1099.8057 g or 1097.6083 8. then the percentage deviation from the principle will be 0.1. In the
case that the vessel is completely evacuated then from Equation 3 the value of mgtums out to be
1100 g.

Furthermore. it is also evident that v (the volume of the sheath and masses) is quite
significant in the calculation of my. The magnitude of v, varies with the density of the masses
uscd. For example, | kg each of aluminium (2.7gem™?), silver (10.5gcm™) and platinium

masses of aluminium, silver. and platinium are used for balancing the same balloon then m¢ will
be different. Even glycerine which has a density of 1.26 gem =3 can be used as the mass but for
this, the pot to be fabricated must be quite large. So it is concluded that even if the principie
holds good if the additional masses used are of aluminium then it may not hold if the additional
masses used are of silver or platinium. So, in all cases, experiments have to be conducted
separately for balloons of different shapes using different masses; in various fluids of high or
low density and viscosity. 3

For appreciable deviation from the principle the lighter or less dense masses (higher vy, thus
higher my) should be used if balloon or vessel is pipe shaped. Further. for spherical or umbrella
shaped balloons the heavier or dense masses (less vy) should be used, in this case mg will be less
according to Equation 3. If the balloon has a spherical shape, ther in first-stage experiments the
mass which balloon actually supports is more often found. Furthermore, to understand the

adding them to the pot. In this case, the balloon or vessel can be Judiciously fabricated and
should be fitted with a lid. Thus, the total volume of air inside the vessel will be the internal
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The generalised form of the principle

One may conclude that such deviations can only be explained if the enunciation of the
principle is modified i.e. If one assumes thar upthrust (or buoyant force) experienced by bailoon
is proportional to the weight of fluid displaced by the body. Hence. Equation 2 becomes.

U=AV+w)D, ¢ (4)

Equation 4 is thus capable of explaining the deviations in the first-stage floating balloon
cxperiments. The value of fis such that the mass which the principle theoretically predicts is
equal to the mass that the balloon experimentally supports. Further. as £js dimensionless it is
expected to depend upon the shape of balloon and also on the dimensionless ratios ve/ Vand D,
"Dy and other relevant tactors. Finally, we must re-emphasise that some SensItive experiments
are required to confirm such a dependence. :
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